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A boundary-integral method is developed for computing first-order and mean 
second-order wave forces on floating bodies with small forward speed in three 
dimensions. The method is based on applying Green’s theorem and linearizing the 
Green function and velocity potential in the forward speed. The velocity potential on 
the wetted body surface is then given as the solution of two sets of integral equations 
with unknowns only on the body. The equations contain no water-line integral, and 
the free-surface integral decays rapidly. The Timman-Newman symmetry relations 
for the added mass and damping coefficients are extended to  the case when the 
double-body flow around the body is included in the free-surface condition. The 
linear wave exciting forces are found both by pressure integration and by a 
generalized far-field form of the Haskind relations. The mean drift force is found by 
far-field analysis. All the derivations are made for an arbitrary wave heading. A 
boundary-element program utilizing the new method has been developed. Numerical 
results and convergence tests are presented for several body geometries. It is found 
that the wave exciting forces and the mean drift forces are most influenced by a small 
forward speed. Values of the wave drift damping coefficient are computed. It is found 
that interference phenomena may lead to negative wave drift damping for bodies of 
complicated shape. 

1. Introduction 
An important problem in offshore technology is the slow drift motions of floating 

marine structures, such as moored ships and oil platforms. The motion is generated 
by resonance between the moored structures and slowly oscillating nonlinear wave 
forces, and may have very large horizontal excursions. The ordinary damping 
mechanisms, due to viscous effects and wave radiation, are often small. In  many sea 
states the so-called wave drift damping is of the same order of magnitude as the 
viscous forces, and may even be the dominant damping effect. It is therefore of great 
importance to  be able to predict this quantity. Wave drift damping is defined as the 
increase in the wave drift force due to a small forward velocity for a body moving in 
waves. By a Taylor expansion of the wave drift force, neglecting higher-order terms, 
the wave drift damping is proportional to  the forward velocity U. The wave drift 
damping therefore behaves formally as an ordinary linear damping, provided that 
the increase with U is positive. Usually this is the case. However, in some special 
examples, as we shall see, the wave drift damping may be negative, and hence 
destabilize the oscillating system. The concept of wave drift damping appears to 
have been initially introduced by Wichers & Sluijs (1979) in connection with their 
free decaying model tests of large-amplitude low-frequency motions, and have been 
discussed further by Wichers & Huijsmans (1984). 
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In  this paper we prcscnt a method to compute first-order unsteady forces and wave 
drift forces for arbitrary bodies a t  forward speed in the three-dimensional case. 
Knowing the wave drift force for small forward speed, the wave drift damping is 
easily found. We shall show that even a small forward speed has a great impact on 
the magnitude of the wave drift forces and exciting forces. The forward velocity U 
is in non-dimensional form given either as a Froude number or by r = Uu/g, where 
u is the frequency of encounter and g the acceleration due to gravity. Typical values 
for the wave period and U in offshore problems are 10 s and 1 m/s, respectively. This 
gives that r x 0.06. We shall therefore throughout the paper assume that r is small 
and only retain linear terms in r. We also assume that the Froude number is small. 
These assumptions will lead to essential simplifications in the solution of the 
boundary-value problem and in the numerical code. Also, this small forward speed 
assumption means that only ring wave systems are generated due to the presence of 
the body. Short ship wave systems are disregarded in this approximation. 

During the progress of this work Zhao et al. (1988) and Zhao & Faltinsen (1989) 
have published two papers of particular relevance to the present contribution. Their 
method is very different from ours. They use a hybrid method, where close to the 
body a boundary-element method with Rankine sources is applied. This region is 
matched to an outer regime where a multipole expansion is used. We shall, where i t  
is natural, compare the results of their method with ours, and we shall generally find 
a good agreement. 

Very recently another relevant paper has been published by Wu &, Eatock-Taylor 
(1990). They obtain formulae equivalent to our formulae (53) and (54), which are an 
extension of the Timman-Newman relations. The methods used are not the same. 
The essential difference is that we, unlike Wu & Eatock-Taylor (1990), in the proof 
do not develop the velocity potential in a series in 7 over the whole free surface, since 
it is not obvious that such a series converges at  large distance from the body. The 
examples in their paper are all two-dimensional. 

In  our approach viscous forces are neglected. The fluid flow is assumed irrotational 
and the fluid incompressible, so potential theory can be used. The boundary 
conditions are linearized with respect to the incident wave amplitude. Since the 
Froude number is small, a rigid wall condition applies on the free surface in the 
steady problem. It is essential that we use a boundary-clement method with a Green 
function satisfying the correct radiation condition at infinity. The solution is 
expressed as an integral over the wetted body surface and the free surface. We do not 
need to discretize any control surface far away from the body, as is necessary with 
methods using a Rankine source as the fundamental solution. Also, we obtain that 
the contribution from the free surface decays rapidly with increasing distance from 
the body, and is thus easy to handle numerically. We will also show that applying 
the correct boundary condition on the body in the steady problem eliminates the 
usual waterline integral, at least for wall-sided bodies. 

To solve the integral equation efficiently, the velocity potential is expanded in an 
asymptotic series in powers of r ,  retaining linear terms. When we calculate the 
potential far away from the body, we return to the unperturbed integral equations. 
On expanding the velocity potential in powers of r ,  the free-surface integral, which 
is of higher order in r ,  disappears as an unknown in the integral equation. Thus, 
unknowns are only needed on the wetted body surface. We have also found it 
appropriate to follow the idea of Huijsmans & Hermans (1985) and expand the Green 
function in power series of r ,  retaining linear terms. Hereby the actual Green 
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function can be expressed by the Green function for r = 0, and its derivatives, for 
which effective subroutines exist. 

A special numerical problem arises if the body has sharp edges. The boundary 
condition is ill-posed a t  sharp edges and corners, and the resulting boundary 
integrals are not integrable. This is circumvented by rewriting the integral equations 
using a special variety of Stokes theorem, known as Tuck’s theorem (Ogilvie & Tuck 
1969). This reduces the order of the derivatives in the body boundary condition by 
one, making the boundary integrals singular but integrable. 

Numerical examples are presented for several different body geometries and 
ranges of parameters, and with convergence tests. Also, an analytical extension of 
the well-known Timman-Newman symmetry relations for the added mass and 
damping coefficients is presented. It is shown that this relation also holds without 
neglecting the steady double-body flow around the body in the free surface- 
condition, which has been done in previous theories (Timman & Newman 1962). Also 
a far-field form of the Haskind relations with forward speed is derived. Both these 
analytical formulae are confirmed numerically. 

In $2, the mathematical formulation, the Green function and the far-field 
behaviour of the outgoing waves are discussed. In  $3, we describe briefly the 
numerical solution procedure. The first- and second-order forces are discussed in $54 
and 5 ,  rcspcctively. I n  $6 we discuss the energy equation and numerical convergence, 
and $7 is a conclusion of the work. 

2. Mathematical formulation 
2.1. The boundary-value problem 

We consider a body B moving horizontally with constant forward speed U and 
responding to long-crested incoming regular waves with small amplitude A .  Let us 
introduce a reference frame (2, y, z )  moving in the same direction as the body with 
forward speed U ,  with the undisturbed free surface in the (x, y)-plane, the x-axis in 
the direction of forward motion, and the z-axis vertically upwards. I n  this reference 
frame the body is performing small oscillations due to the incoming waves, while 
embedded in a uniform current with speed U along the negative x-axis. This 
configuration is shown in figure 1. We assume the fluid to  be homogeneous, 
incompressible, and of infinite extent in the lower half-space. Viscosity and surface 
tension are neglected, thus the motion is irrotational. Then there exists a velocity 
potential @ for the velocity u = Vdj that satisfies the Laplace equation 

V*@ = 0. (1) 

@ = $ s ( ~ )  + t ,  $- @R(X, t ) ,  (2) 

To first order in the wave amplitude, the velocity potential may be written 

where $, is indepcndent of time, and djD and djR are time harmonic with encounter 
frequency CT. The steady potential $, may be written 

$s = w x - 4 ,  (3) 
where -Ux is the ambient uniform current potential and Ux is the steady 
disturbance due to the body. djR is the total radiation potential due to the oscillatory 
motions of the body, which may be written 

(4) 
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FIGURE 1 .  Coordinate system with incoming waves and current. 

where 6, is the amplitude of motion in the j t h  mode (surge, sway, heave, roll, pitch 
and yaw, respectively), and q5, is the corresponding radiation potential for unit 
amplitude of motion. GD is the total diffraction potential, and may be written 

(5 )  

where q57 is the scattering potential, and q50 is the potential due to the incoming 
waves : 

(6) 

@D = Re [A  eibt($o(x) -k #7(X))I, 

' g  e ~ z  e-iK(zcosp+ysinp) 
Q o = ;  

Here K = w 2 / g  is the zero-speed wavenumber, and w is the orbital frequency of the 
incoming wave, given by 

/3 is the incidence angle of the incoming waves. The case /3 = 0 corresponds to 
following waves, while /3 = 7c corresponds to head waves. 

w = ~ + U K c o s / 3 .  (7)  

The steady potential fulfils the body boundary condition 

X =  n, on S ,  
an 

corresponding to  zero flux through the wetted surface. (nl ,  n2, n3) denotes the 
Cartesian components of the normal vector n pointing out of the fluid domain. The 
body boundary conditions for the unknown potentials q5,, j = 1 , .  . . ,7, are (Newman 
1978) 

where (n4, n6, n,) = x x n. m,, j = 1 ,  2, 3 are the components of the vector 

m = --n.V(Vx,) (10) 
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and m,, j = 4, 5, 6 are the components of the vector 

m’ = --n-V(x x Vx,), (11) 

where xs = x-x. (12) 

Thus, the normal derivative of each radiation potential has two parts. The first, the 
n-term, represents the oscillatory normal velocity of the body, while the second, the 
m-term, represents the change in the local steady field due to the motion of the body. 
Computing the m-terms accurately usually represents a difficult numerical problem. 
In our case, this will be circumvented by replacing the m-terms in the boundary- 
integral formulation by first-order derivatives of x, using a variant of Stokes’ 
theorem known as Tuck’s theorem (Ogilvie & Tuck 1969). 

Let 1 be a characteristic dimension of B. If the Froude number Fr = U/(& is much 
less than one, the free-surface condition for the steady potential can be approximated 
by 

s = o  at z = o  (13) az 

to first order in the Froude number. The steady problem defined by (8) and (13) can 
now be easily obtained by a source distribution method. The radiation potentials q5, 
and the diffraction potential q5D = q5,, + q5, will then satisfy the free-surface condition 

to the same order. When q5, is precalculated, this is a linear boundary condition with 
variable coefficients. V1 here means the horizontal gradient. Far away from the body, 
4, = - Ux, and (14) simplifies to the linear boundary condition 

which only contains known constant coefficients. 

7 ,  must behave as outgoing waves: 
Far away from the body, we have a radiation condition stating that 4,’ j = 1 , .  . . , 

q5, - R-~H,(8)exp{kl(8)[z-iR(1-472sin28)~]} as R + a  (16) 

(see Q2.2), where x = R cos 8, y = Rsin 8. The angle-dependent wavenumber kl(8) is 
given in the next section by (26). H,(B) are the amplitude distributions of the 
radiation and scattering potentials. 

2.2. The Green function 
We will solve the radiation and diffraction problems with the boundary condition 
(14) a t  the free surface and the boundary conditions (9) on the wetted body surface 
by applying Green’s second identity to the entire fluid domain. As the Green function 
we will use a pulsating source translating with small forward speed and satisfying the 
free-surface condition (15). This function is given by 

1 1  
(17) G ( x , t )  = ;-7+ W ’ 5 )  

with r and r‘ given by 
r = [(x- o2 + (y-7)’ + ( z - ~ ) ~ ] f  
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and r' = [ ( ~ - g ) ~ + ( y - r ) ~ + ( z + 5 ) ~ 1 1 ,  

and the wave part of the source potential given by 

E(a,  k) dk da 2n 00 

y(v(x' ') = :lo f ( k - K 1 )  (1 + 27 COS a) ' 

where 

The path of integration is above the pole k = K~ given by 

E(a,  k) = k exp [ k ( z  + 5) + ik((x- 6 )  cos a+ ( y -  7) sin a)]. (21) 

where v = cP/g  and 7 = U g / g .  Later, we will use the far-field behaviour of G. This is 
obtained by applying contour integration and the method of stationary phase, giving 

where the stationary phase angle a,(@ is given by 

Thus, we have 

Furthermore, the wavenumber of the outgoing waves is given by 

sin(a,-8) = 2 ~ s i n 8 ,  cos(a,-8) c 0. 

cos (a, - 8)  = - (1 - 472 sin* e)t. 

Hence, 

G(R, 8, z ;  c , r ,  g) = R-h((,  8) exp{kl(8) [ z -  iR(1 -472 sin2 O);]) + 0 - , (2 
where the amplitude h(e, 8) is given by 

The expressions (27) and (28) are in agreement with the results we obtain from 
Newman (1959) by assuming that 7 is small. They disagree, however, with those of 
Haskind (1946, eq. 5.2 1) which do not contain the terms 27 sin2 8 and 27 cos 8 sin 8 in 
the exponential function in (28). These terms give contributions of order 7 which are 
significant for the forces. Another difference is that  the term 472sin28 (which is 
multiplied with R)  does not appear in the formula by Haskind. However, this term 
disappears in the formula for the forces since G is multiplied with G*. 

To first order in 7 ,  01, and kl (8)  are obtained as 

a,, = x+8-27sin8, 

kl(8)  = v ( ~ + ~ T c o s ~ ) .  

2.3. Solution of the boundary-value problem 
Let us first consider the diffraction potential. The variable-coefficient condition (14) 
must be used for $,, on the undisturbed free surface S,, while the constant-coefficient 
condition (15) is used for the forward-speed Green function. Let S, denote a vertical 
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cylinder enclosing the fluid a t  infinity. We apply Green's theorem to #D = #o + $, and 
G, and introduce the boundary condition (9) on the body, This yields 

where the first case applies to x in the fluid domain and the second to  x on the wetted 
body surface. (n is pointing out of the fluid.) For the integrals in (31) we apply 

G ( ~ , 5 ; 7 )  = G ( ~ , x ;  -7 ) .  (32) 

Let C ,  denote the waterline curve of the body, and C, the waterline curve of S,. 
Introducing the free-surface conditions (14) for #D and (15) for G, and applying the 
two-dimensional divergence theorem, we obtain 

We have assumed that the body is wall-sided a t  the free surface to obtain the 
waterline integral on the form above. Applying the boundary condition (8) for x, we 
see that the body waterline integral in (33) vanishes exactly. This would not have 
been the case if we had neglected the steady disturbance x in the free-surface 
condition (14). 

We now want to eliminate the integral over AS, in (31) and the integral over C ,  in 
(33). By using the far-field behaviour of the scattering potential, which is given in 
(16), the far-field behaviour of G ,  given in (27) and (32), together with Green's 
theorem for $o in the entire fluid domain, we can show that 

for x in the fluid domain. o(7) denotes terms of order smaller than 7.  

Introducing (33) and (34) into (31), and omitting o(7) terms, we finally obtain 

where the first case applies to x in the fluid domain and the second to x on the wetted 
body surface. We note that (35) include integrals over the body and the free surface. 

Using the boundary condition (9) on the body, the corresponding result for the 
radiation problems can be shown to be 

(36) 
f o r j = l ,  ..., 6. 

The equations (35) and (36) display some important differences from those usually 
seen in ship hydrodynamics. In the full linear three-dimensional problem, the steady 
disturbance x is usually neglected, leading to  integral equations containing a 
waterline integral. I n  our case, this integral vanishes because the steady potential 
U ( x - x )  satisfies the correct boundary condition (8) on the body surface. Instead of 
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the waterline integral, our equations contain an integral over the free surface. This 
integral, however, decays very rapidly with increasing distance from the body, since 
i t  contains the spatial derivatives of the steady disturbance x ,  and x behaves as a 
dipole far from the body. Therefore we may always truncate the free surface at a 
quite short distance from the body. 

2.4. The perturbed equations 

The integral equations (35) and (36) for the unknown potentials q5j and &, may be 
simplified by assuming that the reduced frequency r + 1. Expanding q5 and G in 
asymptotic series in r ,  and keeping only linear terms, we have 

$4 = p + r $ V ,  (37) 

G = Go+rG1.  (38) 

It must be emphasized that these expansions are local, and only valid a t  finite 
distance from the origin. 

The right-hand sides in the integral equations for the radiation potentials contain 
the m-terms, which are given by (10) and (11). These terms are awkward to compute 
numerically, since they are normal derivatives of the steady velocity. Howevcr, the 
right-hand sides can be rewritten using Tuck's theorem (Ogilvie & Tuck 1969), which 
states that for any differentiable function f, 

provided that the wetted surface S ,  is smooth and that it is wall-sided at  the free 
surface. In our case, the waterline contribution in Tuck's theorem vanishes due to the 
rigid wall condition (13). 

However, the function corresponding to f in the right-hand side of (39) is G o ( x , { ) ,  
which is not differentiable at x = 5 .  This problem may be circumvented by putting 
x in the fluid and letting it approach the body. Since the right-hand side of (39) (with 
f = GO) exists when x approaches the body, the left-hand side must also exist in 
the limit. It follows that the left-hand side of (39) is a principal value integral since 
n . V x s  = 0 on the body boundary. 

Thus, introducing the asymptotic expansions into (35) and (36), applying Tuck's 
theorem and collecting terms of the same order in 7, we find the two sets of integral 
equations : 

/ r r  

where j = D means the diffraction problem. The zero on the right-hand side of the 
diffraction problem stems from the fact that the incident-wave potential q50 is 
independent of r. 
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The series expansion simplifies the problem considerably. Since the free-surface 
integral is of higher order than the other terms, it will only occur at the right-hand 
side. Thus, when discretizing the equations, we only need to solve for the unknown 
potentials q5O and q5l on the body, not a t  the free surface. 

In addition, the free-surface integral decays very rapidly. Since the steady 
disturbance x behaves like a dipole, the integrand decays like RP4, where R is the 
polar radius. Thus, it is only necessary to discretize the free surface out to 2-3 body 
diameters. 

For a body with sharp edges, Tuck’s theorem is not valid. In fact, even the 
boundary condition (9) is invalid in this case. Equation (9) originates from a Taylor 
expansion of the boundary condition applied on the moving boundary. This 
expansion is only valid for smooth surfaces. The result is that the m-terms are not 
even integrable at an edge. With this reformulation, however, the right-hand side is 
integrable as long as the field point is not situated directly a t  the edge. Therefore we 
believe that this formulation will lead to better numerical behaviour a t  the edge. An 
alternative approach for integrating the singular corner flow is given by Zhao & 
Faltinsen (1989). 

3. Numerical methods 
3.1. Solution of the integral equations 

The integral equations (40) and (41) are solved by a conventional panel method. The 
body is approximated by plane quadrilateral elements, and the velocity potential is 
assumed constant over each panel. Using the panel centroids as collocation points, 
the integral equations are reduced to sets of complex linear equations. 

To compute the free-surface integral, the free surface is panelized in the same 
manner as the wetted body surface. However, since this integral only contributes to 
the right-hand sides of the equations, this means very little additional computer 
memory usage. The free surface is truncated at about 3 body diameters’ distance 
from the centre of the body. 

In all the calculations, the singular terms of the various Green functions are 
integrated by the Hess and Smith method. The logarithmic singularities have been 
integrated by the method of Newman & Sclavounos (1987). Numerical integrations 
over each panel are performed using the mid-point rule, except when we compute the 
influence of a point on itself, which is done by four-point Gaussian integration. Our 
program is also designed to use four-point Gaussian quadrature over all panels. 
Experience shows that this does not improve the results significantly, and the four- 
point method increases the total CPU time of the computations by a factor of about 
2 compared to the mid-point method. 

No special algorithms are used to take care of the corner singularities for bodies 
with sharp corners. However, since the integral formulation (41) is used, the right- 
hand sides in the radiation problems are integrable. The errors associated with these 
terms are therefore assumed to be small. 

3.2. The Green function 
The translating pulsating source with small forward speed is given by (17)-(20). 
Following Huijsmans & Hermans (1985), we now expand the wave part of the source 
potential, Y, in powers of 7 :  

Y =  @ o + 7 @ l + . . * .  (42) 
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This is an asymptotic expansion, which is not uniformly valid. It can be used locally, 
but not a t  infinite distance from the source point. $o is the zero-speed source 
potential given by 

where R = [(x- kJ2+ (y- 7,1)~];, J ,  is the Bessel function of the first kind and zero order 
and v = a2/g. The first-order correction term can be written as 

where J, is the Bessel function of the first kind and first order. We note that 

Thus, the Green function for small forward speed can be expressed by means of the 
real and imaginary parts of the zero-speed Green function and its derivatives. The 
integrals of $1 and a$,/an in (40) and (41) may be rewritten to involve only a$o/i3R, 
a$o/az and (l/R)B$.,/aR. The major singularities to be integrated are thus l/r‘, 
In v(r’ + Iz + a) and their gradients. These singularities are integrated analytically. 

4. The first-order wave forces 
Having found the velocity potential by the method presented in the previous 

sections, the first-order wave forces can now be found by pressure integration over 
the body surface. Here, we will develop some useful formulae for the forces and 
examine some important properties of the added mass and damping coefficients and 
the linear exciting force coefficients. 

4.1. Added mass and damping 
The added mass and damping coefficients can now be obtained from the radiation 
potentials. Denoting the added mass coefficients by a,, and the damping coefficients 
by b,,, we can express the radiation force and moment by applying the Bernoulli 
equation, as 

Here i ,  j = 1 , .  . . , 6 ,  and the complex force coefficients f i ,  are defined as 

4 = Re ( - ia& ei“”fij). (46) 

fir = iaaij + b, = p (iaq5, + Vq5s - Vq$) na dS. (47) [ISB 
Using Tuck’s theorem (39), we obtain 

r r  

Timman & Newman (1962) have shown that when the steady disturbance field x is 
neglected in the free-surface condition (14), the added mass and damping satisfy the 
so-called Timman-Newman relations 

f i j ( U )  = f j i ( - U ) ,  i , j =  1 ,..., 6. (49) 
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That is, the hydrodynamic forces are the same when we reverse the forward speed 
and exchange indices. We will now use (48) to  show that these relations are also 
satisfied for an arbitrary body with the free-surface condition (14), which includes x. 
To show this, we introduce the reversed-flow radiation potentials $j, which satisfy 
the boundary conditions (9) and (14) with the sign of Ureversed (but with the same 
encounter frequency). Using the definition of $$, we can write 

Applying Green’s theorem to q5j and +i,  we obtain 

Using the free-surface condition ( 14) and the two-dimensional divergence theorem, 
the integral over the free surface can be written 

Since the body is wall-sided, we obtain from (8) that  the waterline integral a t  the 
body vanishes. 

Let us then consider the integral over S,. The far-field behaviour of g5i and $j is 
given by (16), where 7 is replaced by -7 in $i. Inserting these expressions into the 
integral over S ,  and integrating with respect to  the vertical coordinate, we obtain 
a contribution which to leading order in r cancels the last integral in (52). Thus, to 
leading order in r we have generalized the Timman-Newman relations to  be valid 
with the free-surface condition (14) for a body of general shape, i.e. 

An immediate consequence of (49) is that 

Thus, to leading order the diagonal added mass and damping coefficients only 
depend on the current speed through the frequency of encounter. This is confirmed 
by the numerical results. 

Figures 2 and 3 illustrate the validity of the Timman-Newman relations for a half- 
immersed sphere of radius a a t  Froude number Fr = 0.04 and 0.08 respectively, 
where Fr = U/(ga)i .  The free surface is discretized out to a radius of 6a. The added 
mass and damping coefficients are computed from (47) to avoid the rn-term problem. 
The surge-heave and heave-surge hydrodynamic coefficients are zero a t  Fr = 0, so 
a t  small forward speed they are essentially proportional to Fr. The differences 
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FIGURE 2. Cross-coupling (a) added-mass coefficients a13( U) (solid line) v5. aS1( - U) (dotted line) and 
(21) damping coefficients bI3(U) (solid line) vs. b31( - U) (dotted line) for a half-immersed sphere of 
radius a at F r  = k0.04. 200 panels on half-S,, 440 panels on half-SF. 

between the surgeheave and heave-surge coefficients a t  Fr = & 0.04 are a t  most 2 % 
for the added mass and 7 % for the damping coefficients. The figures are almost the 
same for Fr = +O.OS. 

4.2. The exciting forces 
The Haskind relations express the exciting force in terms of the incident-wave 
potential $o and the reversed-flow radiation potentials k6, so that the first-order 
exciting forces can be computed without knowing the scattering potential $7. The 
Haskind relations for zero forward speed have been known for a long time, see for 
example Newman (1977).  The Haskind relations have been generalized to  small 
forward speed by Zhao & Faltinsen (1988) for the two-dimensional case. Here we 
derive the Haskind relations with forward speed for the three-dimensional case 
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FIGURE 3. Same as figure 2 but Fr = k0.08. 

expressed by far-field integrals, which then gives the exciting force in a very 
convenient form. The diffraction force and moment are given as 

where i = 1, . . . ,6 ,  and a,, is the total diffraction potential given by (5). Inserting (5 )  
and applying Tuck's theorem (39), the force and moment may be written 

F( = Re ( A  eiUtXi), (56) 
where the exciting force coefficients X, are given as 
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where @i denotes the reversed- flow radiation potentials. Applying Green's theorem 
to $7 and @i, we find that 

Using the free-surface condition (14) on $o + $ 7 ,  we have that the free-surface integral 
can be written 

The first integral can be rewritten using Gauss' theorem, resulting in a line integral 
over C, that cancels the surface integral over S,, as in the previous chapter. 
Inserting (59) and the body boundary condition (9) into (58) ,  we obtain 

Inserting this into equation (57) for the exciting forces, we arrive at the Haskind 
relations 

Thus, the exciting forces can be obtained as an integral of the incident-wave 
potential and the reversed-flow radiation potentials over the body and the free 
surface. This formula may be rewritten, by applying Green's theorem to @i and $o, 
into the alternative form 

Introducing the far-field expression for @i and applying the method of stationary 
phase to the integral over 8, we finally obtain 

X i  = pg (:y - ( 1 - 2 ~ ~ 0 ~ ~ ) H ~ ( / 3 + 7 ~ + 2 ~ s i n ~ ) e ' " ~ ~ + o ( ~ ) ,  (63) 

where H i  denotes the amplitude distribution of the ith reversed-flow potential, and 
is obtained from Hi by replacing r by -7 (but keeping u ) .  Hi is found by introducing 
(16) in (36), which gives 

The amplitude h(<, 8) of the Green function is given by (28). 
Thus, the exciting force with forward speed can be found by evaluating the 

radiation potential far-field amplitude at one polar angle, just as in the zero-speed 
case. 
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FIGURE 4. (a )  Heave and ( b )  surge exciting forces for a half-immersed sphere of radius a in head 
waves. Solid line, Fr = 0.04; dotted line, Fr = 0; dashed line, Fr = -0.04. 200 panels on half-S,, 
440 panels on half-8,. 

Figure 4 shows calculations of the exciting forces for a half-immersed sphere in 
head waves and Fr = 0, kO.04. The far-field Haskind relations (63) are used. We note 
that the surge exciting force increases with the Froude number for all wavelengths, 
while the heave exciting force decreases with the Froude number for long waves and 
increases with the Froude number for short waves. 

Figure 5 shows the derivatives of the exciting forces with respect t o  the forward 
speed computed by numerical differentiation of the data in figure 4. The method of 
direct pressure integration is compared to the far-field Haskind relations (63). The 
agreement between the two methods is excellent. 

We observe that the forward speed influence is stronger upon the exciting forces 
than upon the added mass and damping, and apparently stronger on the surge 
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FIGURE 5. Derivative of (a) the heave and ( b )  surge exciting forces with respect to U for a half- 
immersed sphere of radius a in head waves. Comparison of near-field pressure integration (solid 
line) and far-field Haskind relation (dotted line). 200 panels on half-S,, 440 panels on half-8,. 

exciting force than the heave force. I n  the next section, we will see that the influence 
is even stronger on the drift force. 

5. The mean drift force 
The mean steady second-order force, the mean drift force, may be computed by 

direct pressure integration or by using the far-field method. The latter, which is 
obtained by applying the momentum equation, is most accurate and will be applied 
here. The mean drift force F is then given by 
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FIGURE 6. Mean drift force on a half-immersed restrained sphere of radius a in head waves. Solid 
line, Fr = 0.04; dotted line, Fr = 0; dashed line, Fr = -0.04. 200 panels on half-S,, 440 panels on 
half-SF. 

where an overbar denotes time-average. Introducing u' = (u', v', w') using v = 
-Ui+u', applying the Bernoulli equation and conservation of mass, it may be 
shown that (Grue & Palm 1990) 

F = ( -p(@t+glu'(2+gz) n+pv'u..n)dS+pUSS(v'n,-u'n)dS. (66) 
Sm Sm 

This expression for the mean force is valid for arbitrary current speed and water 
depth. We notice that the second term has only a component in the y-direction and 
is dependent on the velocity circulation. It may be shown that this lift force is of 
second order in 7.  The x-component of (66) was derived by Maruo (1960), assuming 
infinite water depth. Introducing the velocity potential, we obtain after some 
calculation for the x-component (i.e. in the current direction) 

ax aR 
Fz = p r {  --[(-y-VEy] 1 x 5 -  C O S ~ + ~  

29 at 2-0 -m 

We note that F, is a function of first-order quantities only, which not generally is true 
for Fv and the mean yaw moment M,. We now insert the expressions (6) for q$, and 
(16) for the radiation and scattering potentials $*. Averaging with respect to time and 
using the method of stationary phase, the wave drift force is obtained as 

where B(8) = (1 - 27 cos B) cos 8 + 27 sin2 8, 

S = - Re (e'"/4H*(p+27sin/3)), r:)" 
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FIGURE 7. The geometry of half an offshore platform. 

FIGURE 8. Discretization of the free surface around the platform in the half-plane y > 0. 

A star denotes complex conjugate. H,(@ is given by (64), and H,(@ is given by 

Figure 6 shows the mean drift force on a half-immersed sphere in head waves (/3 = 
R )  a t  Fr = 0, f0.04. The sphere is restrained from moving in first-order motions. As 
this figure shows, the influence of forward speed is much stronger on the drift force 
than on the first-order forces. 

The forces on an idealized offshore platform are also computed. The submerged 
part of the platform consists of a horizontal ring-like pontoon carrying four vertical 
columns. The vertical columns are circular with radius a and height 3a, and the 
circular pontoon has a rectangular cross-section, with breadth 2a and height 1.4~. 
The columns are placed on the pontoon such that their centres form a square with 
sides 7a. This configuration is shown in figure 7. Each column is discretized with 98 
panels, the half of the pontoon with 288 panels, i.e. the half-body is discretized with 
a total of 484 panels. On half of the free surface there are 468 panels. The 
discretization of the free surface is shown in figure 8. The platform is free to surge in 
linear motion in incoming head waves. 

Figure 9 shows the wave drift force for this geometry at  zero forward speed. The 
figure also shows the result when the pontoon is removed. We observe for both bodies 
typical interference phenomena acting between the different columns. The force is 
remarkably similar for the platform and the cylinder array, except for the interval 
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Ka 
FIGURE 9. Mean drift force on an offshore platform. The platform is free to surge in head 

waves. Fr = 0. Solid line, without pontoon ; dotted line, with pontoon. 

0.7 < Ka < 1.0. For higher frequencies, the pontoon is obviously too deeply 
submerged to influence the forces. As figure 9 shows, the mean drift force on each 
cylinder in the array may be considerably greater than the drift force on a single 
cylinder, which is shown in figure 13 (for small U ) .  

In many practical situations it is of importance to compute the wave drift 
damping, which is the increase in the mean drift force due to a small current, i.e. 

Fz = F,,+FrF,,+o(Fr), (72) 

where Fz0 is the mean drift force a t  zero forward speed and Fxl is the wave drift 
damping coefficient. Figure 10 shows the wave drift damping coefficient for the 
platform and the cylinder array, as described above. Owing to  interference 
phenomena, the wave drift damping oscillates quite rapidly and even becomes also 
negative at some frequencies. 

For Ka-values close to 0.6 the negative value of wave drift damping is significant 
and may lead to the result that the sum of viscous damping and wave drift damping 
becomes small, even negative, for this incident wavenumber. This negative wave 
drift damping seems to  be a result of the wave interference due to the cylinder array. 
As seen from figures 12 and 14, there is no tendency for negative wave drift damping 
for a single cylinder. 

Comparing figures 9 and 10 i t  is noted that dFz,/d(Ka) has a variation with Ka 
which is rather similar to the variation of the wave drift damping. It is a rather 
complex task to find the wave drift damping as displayed in figure 10. A simplified 
method has therefore been proposed, which assumes that the most important 
contribution to the wave drift force from the velocity U is the change in frequency, 
i.e. the Doppler effect. The approximation therefore consists in only considering the 
mean drift force for U = 0, except that  in the free-surface condition o is replaced by 
cr. The wave drift damping is then obtained by taking the derivative of' F,, with 
respect to cr times acr/aU = -K cosp, or, equivalently, with respect to w and 
multiplying with -Kcosp. Figure 10 also displays the wave drift damping 
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FIQURE 10. Wave drift damping coefficient for an offshore platform obtained by numerical 
differentiation of F, at Fr = f 0.005. The platform is free to surge in head waves. Solid line, without 
pontoon; dotted line, with pontoon ; x , simplified method for the cylinder array. 
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FIQURE 11. Mean drift force on a restrained floating cylinder of radius a and draught 3a in head 
waves. Fr = 0. Solid line, present theory, 280 panels on half-S,, 224 panels on half-8,; dotted line, 
Zhao BE Faltinsen (1989, figure 15). 

coefficient for the cylinder array, as function of Ka,  obtained by the simplified 
method, which often is called the wave drift gradient approach, see for example 
Schellin & Kirsch (1989). As seen from the figure, this trivial approximation 
is remarkably good for shorter waves, in this case. The wave drift gradient 
approach fails completely in many cases, however, see for example figure 11 where 
aFxo/a(Ka) = 0 for Ka > 0.8. Fx./pgA2a is, however, far from zero in this case. 

Values of the wave drift force on a vertical surface-piercing cylinder moving in 
head waves are shown in figures 11,  12, 13 and 14. I n  figures 11 and 12, the cylinder 
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FIGURE 12. Wave drift damping coefficient for a restrained floating cylinder of radius a and draught 
3a in head waves, obtained by numerical differentiation of F, at Fr = f0.0319. Solid line, present 
theory, 280 panels on half-S,, 224 panels on half-SF; dotted line, Zhao & Faltinsen (1989, figure 15). 

is restrained, while in 13 and 14 the cylinder is free to  surge. The cylinder radius is 
a and the draught is 3a. The free surface is discretized out to a radius of 6a. We have 
also made a comparison with results from Zhao & Faltinsen (1989) and from 
Faltinsen (1990), obtained with a quite different method. The results for the wave 
drift damping coefficient obtained from the two different methods are reasonably 
close. 

In  the figures displayed we have stopped the calculations at Ka = 1.2. A finer 
panellization of the bodies is needed for higher wavenumbers. 

6 FLM 227 

FIGURE 13. Mean drift force on a floating cylinder of radius a and draught 3a free to surge in head 
waves. Fr = 0.0226. Comparison between the present method (solid line) and Faltinsen (1990, 
p. 163) (dotted line). Present method, 280 panels on half-S,, 224 panels on half-8,. 
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Ka 
FIGURE 14. Wave drift damping coefficient for a floating cylinder of radius a and draught 3a free 
to surge in head waves, obtained by numerical differentiation of Fz a t  Fr = k0.0226. Comparison 
between the present method (solid line) and Faltinsen (1990, p. 163) (dotted line). Present method, 
280 panels on half-S,, 224 panels on half-SF. 

6.  Accuracy of the method 
6.1. The energy equation 

The energy equation relates the mean outflux of wave energy at a control surface 
enclosing the body to the mean work done by the pressure forces acting on the body. 
For the diffraction problem or the case where the body is freely floating in the waves 
(and there are no dissipative forces), the mean work done by the pressure forces a t  
the body is zero. Thus, the energy flux a t  the control surface should be zero in this 
case, giving a check for the accuracy of the method. The mean energy flux through 
the control surface S ,  a t  infinity is given by 

Applying conservation of mass and the Bernoulli equation for the pressure we have 
,.,. 

where 6 is the free-surface elevation. We note that W is entirely determined by 
products of first-order quantities only. Inserting expressions (6) for $o and (16) for 
the radiation and scattering potentials $,, taking the average with respect to time, 
and using the method of stationary phase, we obtain 

where A ( B )  = ~ ( i - 2 7 C O S e ) ;  (76) 

E =;pgA2 and cg denote the mean energy density and the group velocity, 
respectively, of the incoming waves. H ( 0 )  is given by (70) and S is given by (69). 
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FIGURE 15. Convergence of the wave drift force for a restrained vertical cylinder. Incoming waves 
with j3 = n, Ka = 1. Number of panels on the half of S, and on the half of S,, respectively, are : Solid 
line, 416 (SB), 228 (8,); long-dashed line, 216 (8& 156 (S,); short-dashed line, 96 (8,), 72 (8,); 
dotted line, 54 (SB), 36 ( ~ 7 ~ ) .  

Fr 7 W/2aEc, W'lZaEc, 

0.00 O . o o 0 0  -0.000721 -0.000721 
0.02 0.0204 0.008731 0.001 171 
0.04 0.0416 0.029872 -0.000140 
0.06 0.0636 0.065699 -0.001400 
0.08 0.0864 0.118346 -0.000180 

TABLE 1. Energy flux a t  infinity for a restrained vertical surface-piercing cylinder, with radius a 
and draught 3a. The energy flux is non-dimensionalized with the incoming wave energy flux per 
cylinder diameter. Also values of W'/2aEc, = W/2aEc, - ( 19Fr2-6Fr3) are shown. The half-wetted 
body surface is panelled with 416 panels, and the  half of the free surface with 288 panels. 

Let us then, as an example, consider the energy flux a t  infinity for a restrained 
vertical surface-piercing cylinder moving with a small forward speed in head waves. 
The wavenumber is K a  = 1 and the Froude number is between 0 and 0.08. Values of 
W/2Ecu, i.e. the outflux of energy at infinity divided by the energy flux of the 
incoming waves per cylinder diameter, are shown in table 1 ,  column 3.  For zero 
forward speed the table shows that the energy loss in the model is 7.2 x lop4. For 
increasing Froude number, however, there is a net outflux of energy a t  infinity, up 
to 12 '!LO of the incoming wave energy per cylinder diameter. This energy flux is partly 
due to  numerical errors, and partly to  contributions from higher-order terms in the 
Froude number, which are not taken into account in the model. Assuming that errors 
due to higher-order terms behave for small Froude number like a, Fr2 + a2 Fr3, we 
apply the least-squares method to this function for the values of W given in the table. 
The result is that a, x 19, a2 x -6 .  In table 1 ,  column 4, we show values of 

w'- - (19Fr2-6Fr3), 
SaEc, 2aEcu 

6-2  
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FIGURE 16. Same as figure 15, but cylinder is free to surge in linear motion. 

which demonstrate that the numerical errors to first order in the Froude number are 
of order lop3 in this case. 

6.2. Convergence of numerical method 
Let us next discuss the convergence of the numerical method for an increasing 
number of panels on the body surface and on the free surface. As an example, we 
consider the convergence of the drift force on the vertical surface-piercing cylinder, 
which either is restrained or free to surge in the incoming waves. The incoming waves 
are propagating along the negative x-axis, i.e. p = x ,  the wavenumber is Ka = 1,  and 
the Froude number is between -0.08 and 0.08. In  figures 15 and 16 are shown results 
for Fz with the number of panels on half of the wetted body surface varying from 54 
to 416, and the number of panels on half of the free surface varying from 36 to 288. 
The figures exhibit a remarkably quick convergence of the drift force for negative 
values of the Froude number, while the convergence is rather slow for Fr > 0.04. 
However, the results for the finest and next finest discretizations are always very 
close. For these two discretizations the difference is less than 0.5 % for the restrained 
cylinder, while it is less than 1.5 % for the cylinder free to surge. 

The figures also show a quick convergence of the wave drift damping coefficient, 
i.e. (8Fz/3Fr)lFr-o. The difference in the wave drift damping coefficient obtained by 
the finest and next finest discretization is less than 1 Yo for the restrained cylinder, 
and less than 2 YO for the cylinder free to surge. A rough estimate of the wave drift 
damping coefficient, within 10 % accuracy, may even be obtained with the coarsest 
panellization of the cylinder. Thus, these examples demonstrate that the wave drift 
damping coefficient is predicted with the same accuracy as the mean drift force a t  
zero speed. 

7. Conclusion 
Using a boundary-element method we have developed a numerical code which 

computes the velocity potential, and the first-order and mean second-order wave 
forces on floating bodies with small forward speed in three dimensions. From the 
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mean second-order force the wave drift damping coefficient is readily obtained. The 
method is very effective since the unknowns are located only on the wetted part of 
the floating body. The usual waterline integral disappears in the integral equations. 

It is shown that the wave exciting forces and the mean drift forces are most 
influenced by a small forward velocity. The Timman-Newman relations are proved 
also to be valid when the steady double-body flow around the body, the X-field, is 
included in the free-surface condition. From these relations it follows that the 
diagonal terms for added mass and damping are dependent on the forward velocity 
only through the frequency of encounter. 

From the examples discussed we find that the energy is conserved in the model, 
within a very good accuracy, to first order in the forward velocity. Also, the 
numerical method predicts the wave drift damping coefficient with the same 
accuracy as the wave drift force at zero speed. Furthermore, a good estimate of the 
wave drift damping coefficient may be obtained with a rather coarse discretization 
of the body, which is of great advantage for large bodies of complicated shape. On 
the free surface, integration out to a distance of about 2-3 diameters from the body 
is sufficient. For simple bodies the wave drift damping is found to be positive. 
However, for complex bodies, where resonance may occur, the wave drift damping 
may become negative in narrow wavenumber regions, and lead to negative damping. 
The applicability of the so-called wave drift gradient approach is also discussed, with 
the conclusion that this method predicts the wave drift damping coefficient fairly 
well in some cases, but fails completely in other cases. 
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